八皇后问题
是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。当且仅当 n = 1 或 n ≥ 4 时问题有解。
历史
八皇后问题最早是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出。之后陆续有数学家对其进行研究,其中包括高斯和康托,并且将其推广为更一般的n皇后摆放问题。八皇后问题的第一个解是在1850年由弗朗兹·诺克给出的。诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。1874年,S.冈德尔提出了一个通过行列式来求解的方法,这个方法后来又被J.W.L.格莱舍加以改进。
艾兹格·迪杰斯特拉在1972年用这个问题为例来说明他所谓结构性编程的能力。
八皇后问题出现在1990年代初期的著名电子游戏第七访客中。
八皇后問題的解
八皇后问题一共有 92 个互不相同的解。如果将旋转和对称的解归为一种的话,则一共有12个独立解,具体如下:
解的个数
下表给出了 n 皇后问题的解的个数包括独立解U(OEIS中的数列A002562)以及互不相同的解D(OEIS中的数列A000170)的个数:
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | .. | 24 | 25 | 26 |
U: | 1 | 0 | 0 | 1 | 2 | 1 | 6 | 12 | 46 | 92 | 341 | 1,787 | 9,233 | 45,752 | .. | 28,439,272,956,934 | 275,986,683,743,434 | 2,789,712,466,510,289 |
D: | 1 | 0 | 0 | 2 | 10 | 4 | 40 | 92 | 352 | 724 | 2,680 | 14,200 | 73,712 | 365,596 | .. | 227,514,171,973,736 | 2,207,893,435,808,352 | 22,317,699,616,364,044 |
可以注意到六皇后问题的解的个数比五皇后问题的解的个数要少。现在还没有已知公式可以对 n 计算 n 皇后问题的解的个数。
程序
/*
* Copyright (c) leo
* All rights reserved.
* filename: nQueens
* summary :
* version : 1.0
* author : leo
* date : 8.12.2011
*问题:
* 在n*n (n=1 or n>=4 )的棋盘上放置n个皇后,如果在同一行,同一列,同一对角线上都不存在两个皇后,
* 那么这个棋盘格局就是n皇后的一个解。
*要求:
* 找出n皇后的一组解即可,打印出放置满足n皇后条件的棋子位置
*/
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<conio.h>
#define N 8 //皇后数=棋盘行列数
int a[N]; //a[i]为第i行皇后所在列
void show() //图形化输出
{
int i;
int p,q ;
int b[N][N]={0};
static t=1;
printf("第%d个解为: ",t++);
for(i=0;i<N;i++)
{
b[i][a[i]]=1;
printf("(%d,%d) ",i,a[i]);
}
printf("\n");
for(p=0;p<N;p++)
{
for(q=0;q<N;q++)
{
if(b[p][q]==1)
printf("●");
else
printf("○");
}
printf("\n");
}
}
int check(int n) //满足条件返回1,否则返回0
{
int i;
for(i=0;i<n;i++)
{
if(a[i]==a[n]||fabs(n-i)==fabs(a[i]-a[n])) //at the same column or diagonal (对角线)
return 0;
}
return 1;
}
void put(int n) //在第n行放置第n个皇后
{
int i;
if(n==N)
return ;
for(i=0;i<N;i++)
{
a[n]=i;
if(check(n)) //位置合法
{
if(n==N-1) //皇后全部放置完毕
show();
else
put(n+1);
}
}
}
int main ()
{
put(0);
return 0;
}
參考資料
Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton: Princeton University Press. ISBN 0-691-11503-6.
O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare Structured Programming, Academic Press, London, 1972 ISBN 0-12-200550-3 see pp 72-82 for Dijkstra's solution of the 8 Queens problem.